POLAR AND ANCHIMERIC EFFECTS IN THE SOLVOLYSIS OF 6-endo-SUBSTITUTED 2-NORBORNYL-p-TOLUENE-SULFONATES

> Cyril A. Grob, Bettina Günther & Reinhard Hanreich, Institute of Organic Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland.

Summary. A study of the influence of 6-endo substituents on the reactivity of 2-exo- and 2-endo-norbornyl p-toluenesulfonates 3 and 4, respectively, confirms that polar rather than steric effects control relative rates.

Comparative studies of the rates and products of diastereomeric 6-substituted 2-norbornyl tosylates <u>1</u>, <u>2</u> and <u>3</u> have provided valuable information regarding the solvolysis mechanism of the parent compounds, i.e. 2-exo and 2-endonorbornyl tosylate, <u>1</u> and <u>2</u>, R = H, respectively ¹. Now that additional 6-endo-R-2-exo-tosylates <u>3</u> and some 6-endo-R-2-endo-tosylates <u>4</u> have been prepared the importance of polar and steric effects in the reactions of norbornyl derivatives ² can be discussed on a broader experimental basis.

The reactions of the tosylates $\underline{3e} - \underline{3i}$ (TABLE) in 70 % dioxane differ markedly from those of the recently reported tosylates $\underline{3a} - \underline{3d}^{1d}$. Whereas the latter react via norbornyl cations, the tosylates $\underline{3e}$, $\underline{3f}$ and $\underline{3g}$ react with anchimeric assistance from the nucleophilic endo substituents OCOCH₃, COOCH₃ and CH₂NH₂, respectively, to form the known products $\underline{5}$, $\underline{6}$ and $\underline{7}$ (R = NH) ³. This also follows from their rate constants $\underline{k_3}$ in 80 % ethanol which are 68, 131 and 132 times as large as those for the corresponding 6-exo epimers $\underline{1e}$, $\underline{1f}$ and $\underline{1g}$, as the rate TABLE. First order rate constants k for $\underline{3}$ and $\underline{4}$ in 80 vol. % ethanol and rate ratios at 70.0° C (* denotes rates at 140° C).

	R =	к <u>3</u>	^k 4	^k <u>3</u> /k <u>1</u>	^k <u>3</u> /k <u>4</u>	^k <u>2</u> / <u>4</u>
a)	н	3.58×10^{-2}	8.42×10^{-5}	1	425	1
b)	СН3	5.58 x 10 ⁻³	1.19×10^{-5}	0.51	469	5.1
c)	Br	1.95×10^{-7}	3.10×10^{-8}	1.3	6.3	13
d)	CN	6.65 x 10 ^{-5*}	5.98 x 10 ^{-6*}	0.35	11*	18*
e)	ососнз	5.56 x 10 ⁻⁵	1.65×10^{-7}	68	337	7.3
f)	сооснз	8.29×10^{-4}		131		
g)	CH2NH2	1.17		132		
h)	осн ₃	2.75×10^{-4}	4.68 x 10 ⁻⁶	0.95	59	9.2
i)	ОН	2.02×10^{-3}	7.46 x 10^{-4}	3.3	2.7	0.134

≁он сн₃

<u>5</u>

0″ <u>6</u>

ОН

CH2CHO

<u>7</u>

<u>11</u>

R

<u>12</u>

Ŕ

<u>9</u>

<u>14</u>

<u>10</u>

R

<u>13</u>

ratios $k_{\underline{3}}/k_{\underline{1}}$ in the TABLE show. The tosylates of the endo-carboxylic acid $\underline{3}$, R = COOH, and the alcohol $\underline{3}$, R = CH₂OH, were not isolable and cyclized spontaneously to $\underline{6}$ and $\underline{7}$ (R = O), respectively. Like their 6-exo-epimers $\underline{1h}$ and $\underline{1i}$ ^{la} the 6-endo-methoxy and 6-endo-hydroxy tosylates $\underline{3h}$ and $\underline{3i}$, respectively, underwent concerted fragmentation to the aldehyde $\underline{8}$, and at similar rates (cf. $k_{\underline{3}}/k_{\underline{1}}$ in the TABLE).

The six 6-endo-substituted 2-endo-tosylates studied to date are <u>4b</u> (R = CH₃), <u>4c</u> (R = Br), <u>4d</u> (R = CN), <u>4e</u> (R = OAc), <u>4h</u> (R = OCH₃) and <u>4i</u> (R = OH) (TABLE). When reacted in 70 % dioxane the tosylate <u>4b</u> yielded the tertiary alcohol <u>9</u> by a $C(1) \rightarrow C(2)$ carbon shift followed by a $C(6) \rightarrow C(2)$ hydride shift ^{1d} as well as the alcohols <u>10</u> and <u>11</u>, R = CH₃. The tosylate <u>4c</u> led to products derived mainly from the bromo alcohols <u>10</u> and <u>11</u>, R = Br, and the bromo olefins <u>12</u> and <u>13</u>, R = Br. The cyano tosylate <u>4d</u> led to unidentifiable products due to the long reaction time (11 days) and the high temperature (140°) required. The acetate <u>4e</u> yielded mainly <u>11</u> and <u>13</u>, R = OAc, whereas <u>4h</u> and <u>4i</u> underwent fragmentation to the aldehyde <u>8</u>.

The rate constants for the 6-endo-R-2-endo-tosylates $\underline{4}$ in 80 % ethanol are compared to those for the corresponding 2-exo-tosylates $\underline{3}$ in the TABLE. The ratios of the constants $k_{\underline{3}}/k_{\underline{4}}$ decrease as the electron-attracting power of the substituents a - d increase. Furthermore, log k values for $\underline{4a} - \underline{4e}$ correlate well with the respective inductive substituents constants $\delta_{\underline{1}}^{\underline{q}} \overset{4}{\underline{q}} = -1,13$, a sign that rates are controlled by polar effects.

The high k_3/k_4 ratios of 337 and 59 when R = OCOCH₃ and OCH₃, respectively, are due to the anchimeric effect in the former compound <u>3e</u> and to the frangomeric effect ⁵ in the latter compound <u>3h</u>, both effects being excluded in the endo-endo series <u>4</u> for stereoelectronic reasons. Surprisingly, k_3/k_4 is only 2.7 when R = OH. This low ratio is due to the unusually high rate of <u>4i</u>⁶ and is evidently caused by hydrogen bonding of the 6-endo-OH to the endo-OTs group, as in <u>14</u> (broad band at 3350 cm⁻¹, unchanged on dilution), thus facilitating ionization of the latter in the manner of a protic solvent. Conversely, the 6-endo-OCH₃ group hinders sclvation by a protic solvent and lowers the ionization rate. This conclusion is supported by the k_2/k_4 ratios which are larger than one except when R = OH (TABLE).

Steric hindrance to ionization 2 seems to be of minor importance in determining 2-exo/2-endo rate ratios, as the effect of an endo-methyl group at C(6) in <u>3</u> and <u>4</u> shows. Thus, the endo-methyl group in <u>3b</u> lowers the rate of 2-exonorbornyl tosylate <u>3a</u> by a factor of 6.4 (TABLE), although it cannot hinder the ionization of the 2-exo-OTs group. In the 2-endo-tosylate <u>4b</u>, where hindrance to the departure of the endo-OTs group might be expected ² the endo-methyl group decreases rate by a similar factor, namely 7. This absence of a significant difference between the H/CH₃ ratios in <u>3</u> and <u>4</u> supports our view ^{1c} that 2-exo/ 2-endo rate ratios are determined mainly by polar and stereoelectronic effects. However, the rate decrease of approximately seven caused by the 6-endo-methyl group in 3b and 4b could well be the result of steric hindrance to solvation.

REFERENCES

- a. W. Fischer, C.A. Grob & G. von Sprecher, Tetrahedron Lett. <u>1979</u>, 473;
 b. W. Fischer, C.A. Grob, G. von Sprecher & A. Waldner, ibid. <u>1979</u>, 1901;
 c. ibid. <u>1979</u>, 1905; d. C.A. Grob, B. Günther & R. Hanreich, ibid., in press.
- cf. H.C. Brown, "The Nonclassical Ion Problem", with comments by P. von R. Schleyer, Plenum Press, New York 1977.
- 3) W. Fischer, C.A. Grob, G. von Sprecher & A. Waldner, Helv. 63, 928 (1980).
- 4) C.A. Grob, M.G. Schlageter & B. Schaub, Helv. <u>63</u>, 57 (1980).
- 5) C.A. Grob, Angew. Chem. 81, 543 (1969); Int. Ed. 8, 535 (1969).
- <u>4i</u> reacts 159 times faster than <u>4h</u>, whereas <u>3i</u> reacts only 7 times faster than <u>3h</u>.

(Received in Germany 19 January 1981)