POLAR AND ANCHIMERIC EFFECTS IN THE SOLVOLYSIS OF 6-endo-SUBSTITUTED 2-NORBORNYL-p-TOLUENE-SULFONATES

> Cyril A. Grob, Bettina Giinther & Reinhard Hanreich, Institute of Organic Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland.

Summary. A study of the influence of 6-endo substituents on the reactivity of 2-exo- and 2-endo-norbornyl p-toluenesulfonates 3 and $\frac{4}{1}$, respectively, confirms that polar rather than steric effects control relative rates.

Comparative studies of the rates and products of diastereomeric 6-substituted 2-norbornyl tosylates I, 2 and 2 have provided valuable information regarding the solvolysis mechanism of the parent compounds, i.e. 2-exo and 2-endonorbornyl tosylate, 1 and 2, R = H, respectively ¹. Now that additional 6-endo- $R-2$ -exo-tosylates 3 and some 6 -endo- $R-2$ -endo-tosylates 4 have been prepared the importance of polar and steric effects in the reactions of norbornyl derivatives 2 can be discussed on a broader experimental basis.

The reactions of the tosylates $3e - 3i$ (TABLE) in 70 % dioxane differ markedly from those of the recently reported tosylates $\underline{3a}$ - $\underline{3d}$ $^{-1d}.$ Whereas the latter react via norbornyl cations, the tosylates $3e$, $3f$ and $3g$ react with anchimeric assistance from the nucleophilic endo substituents OCOCH₂, COOCH₃ and CH₂NH₂, respectively, to form the known products $\frac{5}{2}$, $\frac{6}{2}$ and $\frac{7}{2}$ (R = NH) 3 . This also follows from their rate constants k_3 in 80 % ethanol which are 68, 131 and 132 times as large as those for the corresponding 6 -exo epimers $1e$, $1f$ and $1g$, as the rate

TABLE. First order rate constants k for $\frac{3}{4}$ and $\frac{4}{4}$ in 80 vol. % ethanol and rate ratios at 70.0° C (* denotes rates at 140° C).

-OH

 c_{H_3}

 $\overline{5}$

 $0²$ $\frac{6}{5}$

0H

CH₂CHO

 \overline{R}

 $\overline{11}$

 $\underline{8}$

 12

Ŕ

 \overline{a}

 14

 10

 R

 13

ratios k_3/k_1 in the TABLE show. The tosylates of the endo-carboxylic acid 3, R = COOH, and the alcohol $\frac{3}{5}$, R = CH₂OH, were not isolable and cyclized spontaneously to 6 and 7 (R = 0), respectively. Like their 6-exo-epimers $1h$ and $1i$ ^{1a} the 6-endo-methoxy and 6-endo-hydroxy tosylates 3h and 3i, respectively, underwent concerted fragmentation to the aldehyde <u>8</u>, and at similar rates (cf. $k_3/k_{\frac{1}{2}}$ in the TABLE).

The six 6-endo-substituted 2-endo-tosylates studied to date are $\frac{4b}{3}$ (R = CH₃), $4c$ (R = Br), $4d$ (R = CN), $4e$ (R = OAc), $4h$ (R = OCH₃) and $4i$ (R = OH) (TABLE). When reacted in 70 % dioxane the tosylate $4b$ yielded the tertiary alcohol 9 by a $C(1) \rightarrow C(2)$ carbon shift followed by a $C(6) \rightarrow C(2)$ hydride shift 1d as well as the alcohols <u>10</u> and <u>11</u>, R = CH₃. The tosylate <u>4c</u> led to products derived mainly from the bromo alcohols 10 and 11, $R = Br$, and the bromo olefins 12 and 13, $R =$ Br. The cyano tosylate 4d led to unidentifiable products due to the long reaction time (11 days) and the high temperature (140°) required. The acetate 4e yielded mainly μ and μ , R = OAc, whereas $4h$ and $4i$ underwent fragmentation to the aldehyde 8.

The rate constants for the 6-endo-R-2-endo-tosylates 4 in 80 % ethanol are compared to those for the corresponding 2-exo-tosylates $\frac{3}{2}$ in the TABLE. The ratios of the constants k_2/k_4 decrease as the electron-attracting power of the substituents a - d increase. Furthermore, log k values for $4a - 4e$ correlate well with the respective inductive substituents constants $6\frac{q}{r}$ 4 $(q = -1,13)$, a sign that rates are controlled by polar effects.

The high k_3/k_4 ratios of 337 and 59 when R = OCOCH₃ and OCH₃, respectively, are due to the anchimeric effect in the former compound $3e$ and to the frangomeric effect 5 in the latter compound $3h$, both effects being excluded in the endo-endo series $\frac{4}{3}$ for stereoelectronic reasons. Surprisingly, k_3/k_4 is only 2.7 when R = OH. This low ratio is due to the unusually high rate of 4 i $^{\rm 6}$ and is evidently caused by hydrogen bonding of the 6-endo-OH to the endo-OTs group, as in 14 (broad band at 3350 cm⁻¹, unchanged on dilution), thus facilitating ionization of the latter in the manner of a protic solvent. Conversely, the 6 -endo-OCH₃ group hinders sclvation by a protic solvent and lowers the ionization rate. This conclusion is supported by the k_2 / k_4 ratios which are larger than one except when R = OH (TABLE).

Steric hindrance to ionization 2 seems to be of minor importance in determining 2-exe/2-endo rate ratios, as the effect of an endo-methyl group at C(6) in <u>3</u> and <u>4</u> shows. Thus, the endo-methyl group in 3b lowers the rate of 2-exonorbornyl tosylate <u>3a</u> by a factor of 6.4 (TABLE), although it cannot hinder the ionization of the 2-exo-OTs group. In the 2-endo-tosylate 4b, where hindrance to the departure of the endo-OTs group might be expected 2 the endo-methyl group decreases rate by a similar factor, namely 7. This absence of a significant difference between the H/CH₃ ratios in $\frac{3}{4}$ and $\frac{4}{4}$ supports our view ^{1c} that 2-exo/ 2-endo rate ratios are determined mainly by polar and stereoelectronic effects. However, the rate decrease of approximately seven caused by the 6-endo-methyl group in 3b and 4b could well be the result of steric hindrance to solvation.

REFERENCES

- 1) a. W. Fischer, C.A. Grob & G. von Sprecher, Tetrahedron Lett. 1979, 473; b. W. Fischer, C.A. Grob, G. von Sprecher & A. Waldner, ibid. 1979, 1901; c. ibid. 1979, 1905; d. C.A. Grob, B. Giinther & R. Hanreich, ibid., in press.
- 2) cf. H.C. Brown, "The Nonclassical Ion Problem", with comments by P. von R. Schleyer, Plenum Press, **New** York *1977.*
- 3) W. Fischer, C.A. Grob, G. von Sprecher & A. Waldner, Helv. 63, 928 (1980).
- 4) C.A. Grob, M.G. Schlageter & B. Schaub, Helv. 63, 57 (1980).
- 5) C.A. Grob, Angew. Chem. 81, 543 (1969); Int. Ed. 8, 535 (1969).
- 6) 4i reacts 159 times faster than $4h$, whereas $3i$ reacts only 7 times faster than 3h.

(Received in Germany 19 January 1981)